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Abstract

We describe a novel approach to quadra-
ture for ratios of probabilistic integrals, such
as are used to compute posterior probabili-
ties. This approach offers performance su-
perior to Monte Carlo methods by exploit-
ing a Bayesian quadrature framework. We
improve upon previous Bayesian quadrature
techniques by explicitly modelling the non-
negativity of our integrands, and the correla-
tions that exist between them. It offers most
where the integrand is multi-modal and ex-
pensive to evaluate. We demonstrate the ef-
ficacy of our method on data from the Kepler
space telescope.

1 Introduction

Bayesian inference often requires the evaluation of
nonanalytic definite integrals. In the main, techniques
for numerical integration estimate the integral given
the value of the integrand on a set of sample points,
limited in size by the computational expense of evalu-
ating the integrand. As discussed in (o’hagan, 1987),
traditional Monte Carlo integration techniques do not
make the best possible use of this valuable informa-
tion. An alternative is found in Bayesian quadrature
(o’hagan, 1991), which uses these samples within a
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Gaussian process model to perform inference about the
integrand. The analytic niceties of the Gaussian then
permit inference to be performed about the integral
itself, the ultimate object of our interest. However,
this use of a Gaussian process comes at a cost: as the
Gaussian has unbounded support, it cannot reflect the
knowledge that the integrand is a non-negative prob-
ability. This means that this model does not rule out
negative probabilities, which can potentially give rise
to misleading results. A second problem is encoun-
tered when we wish to estimate the ratio of two in-
tegrals with common terms, as is the case when we
marginalise hyperparameters by evaluating the ratio
of two integrals over the likelihood, as in

p
(

y|z
)

=

∫

p
(

y|z, φ
)

p
(

z|φ
)

p(φ) dφ
∫

p
(

z|φ
)

p(φ) dφ
.

Here we are required to model the correlation that
exists between the common terms in order to not over-
estimate the importance of samples in those terms.

We address the first of these problems by modeling
the non-negative terms in our integrand with a Gaus-
sian process on their logarithm. This, and the correla-
tion between common terms, destroy the analytic re-
sults relied upon by previous formulations of Bayesian
quadrature. We propose to linearise our ratio of in-
tegrals as a function of the terms in the integrand,
around suitable ‘best-fit’ values. This gives us an al-
gorithm, Bayesian quadrature for ratios (bqr), that
on synthetic examples outperforms traditional Monte
Carlo approaches. Our algorithm is also applied to
real data drawn from the Kepler mission, where so-
phisticated inference is needed to model light curves
given very noisy observations.
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2 Gaussian Processes

Gaussian processes (gps) offer a powerful method
to perform Bayesian inference about functions
(rasmussen and williams, 2006). A gp is defined
as a distribution over the functions f : Φ → R such
that the distribution over the possible function values
on any finite subset of Φ is multivariate Gaussian. For
a function f(φ), the prior distribution over its values f
on a subset φ ⊂ Φ are completely specified by a mean
vector µ and covariance matrix K

p(f |I) := N
(

f ;µf ,Kf

)

:=
1

√

det 2πKf

exp
(

− 1

2
(f − µf )

T K−1

f (f − µf )
)

,

where I, the context, forms the background knowledge
upon which all our probabilities are conditioned. Its
ubqiuity leads us to henceforth drop it from explicit
representation for notational convenience. The con-
text, I, includes prior knowledge of both the mean
and covariance functions, which generate µf and Kf

respectively. The prior mean function is chosen as ap-
propriate for the problem at hand (often a constant),
and the covariance function is chosen to reflect any
prior knowledge about the structure of the function of
interest, for example periodicity or differentiability. In
this paper, we’ll use Gaussian covariance functions,

Kf(φ1, φ2) := h2
f N (φ1;φ2, wf ) . (1)

Here hf specifies the output scale (‘height’) over f ,
while wf defines a (squared) input scale (‘width’) over
φ. Note that φ itself may be multi-dimensional, in
which case wf must actually be a covariance matrix.
Where this is true for the remainder of the paper, we’ll
take wf as diagonal.

Let us assume we have observations (φs,fs) and are
interested in making predictions about the function
values f⋆ at input φ⋆. We will assume that knowledge
of function inputs such as φs and φ⋆ is incorporated
into I (and will hence usually be hidden). With this
information, we have the predictive equations

p
(

f⋆|fs

)

= N
(

f⋆;mf |s(φ⋆), Vf |s(φ⋆)
)

,

where we have, for the mean m(a|b) :=
∫

a p
(

a|b
)

da

and variance V (a|b) :=
∫ (

a−m(a|b)
)2

p
(

a|b
)

da,

mf |s(φ⋆) := m(f⋆|f s)

= µf (φ⋆) +Kf(φ⋆,φs)Kf(φs,φs)
−1
(

fs − µf (φs)
)

(2)

Vf |s(φ⋆) := V (f⋆|fs)

= Kf(φ⋆, φ⋆)−Kf(φ⋆,φs)Kf(φs,φs)
−1Kf(φs, φ⋆) .

3 Bayesian Quadrature

Bayesian quadrature (o’hagan, 1991; rasmussen

and ghahramani, 2003) is a means of performing
Bayesian inference about the value of a potentially
nonanalytic integral

〈f〉 :=
∫

f(φ) p(φ) dφ . (3)

Note that we use a condensed notation; this and all
integrals to follow are definite integrals over the entire
domain of interest. We’ll assume we are integrating
with respect to a Gaussian prior

p(φ) := N (φ; νφ, λφ) , (4)

although other convenient forms, or, if necessary, the
use of an importance re-weighting trick, allow any
other integral to be approximated (osborne, 2010).
If φ is a vector, νφ is a vector of identical size, and λφ

an appropriate covariance matrix.

Quadrature involves evaluating f(φ) at a vector of
sample points φs, giving f s := f(φs). Of course, this
evaluation is often a computationally expensive opera-
tion. The resultant sparsity of our samples introduces
uncertainty about the function f between them, and
hence uncertainty about the integral 〈f〉.
We address the estimation of the value of our integral
as a problem of Bayesian inference (o’hagan, 1992).
In our case, both the values f(φs) and their locations
φs represent valuable pieces of knowledge. As dis-
cussed by o’hagan (1987), traditional Monte Carlo,
which approximates as

〈f〉 ≃ 1

|s|

|s|
∑

i=1

f(φi) , (5)

effectively ignores the information content of φs, lead-
ing to unsatisfactory behaviour.1

We choose for f a gp prior with mean µf and the Gaus-
sian covariance function (1). Here the scales hf and wf

are quadrature hyperparameters, hyperparameters that
specify the gp used for Bayesian quadrature. These
quadrature hyperparameters, and the others that fol-
low, will be fitted using maximum likelihood, and in-
corporated into the (hidden) context I.

Note that variables over which we have a multivariate
Gaussian distribution are jointly Gaussian distributed

1For example, imagine that we had |s| = 3, and φ1 =
φ2. In this case, the identical value q(φ1) = q(φ2) will
receive 2/3 of the weight, whereas the equally useful q(φ3)
will receive only 1/3.
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with any affine transformations of those variables. Be-
cause integration is affine, we can hence use our com-
puted samples f s to perform analytic Gaussian pro-
cess inference about the value of integrals over f(φ),
such as 〈f〉. Our mean estimate for 〈f〉 given fs is

m(〈f〉|f s) =

∫∫

〈f〉 p(〈f〉|f) p(f |f s) d〈f〉df

=

∫∫

〈f〉 δ
(

〈f〉 −
∫

f(φ) p(φ) dφ

)

N
(

f ;mf |s, Vf |s

)

d〈f〉df

=

∫

mf |s(φ) p(φ) dφ

= µf + Υf (φs)
T τf (φs) , (6)

where for φi ∈ φs,

Υf (φi) :=

∫

Kf (φi, φ)p(φ) dφ = h2
f N (φi; νφ, λφ + wf )

τf (φs) := Kf

(

φs,φs

)

−1

(fs − µf ) .

Note that the form of our ‘best estimate’ for 〈f〉, (6),
is an affine combination of the samples f s, just as for
traditional quadrature or Monte Carlo techniques. In-
deed, if µf is taken as the mean of f s (as is usual for
gp inference), the second term in (6) can be viewed
as a correction factor to the Monte Carlo estimate (5).
Note also that hf represents a simple multiplicative
factor to both Υf (φs)

T and Kf

(

φs,φs

)

, and as such
cancels out of (6). As per the appendix (osborne,
et al., 2012), it is also possible to evaluate the Bayesian
quadrature estimate for an integral over the product
of functions.

4 Bayesian Quadrature for Ratios

We now present a novel approach to performing in-
ference about probabilistic integrals. In inference, we
are very commonly interested in making predictions
about some variable y(x), of which we receive poten-
tially noise corrupted observations z(x). This form
encompasses problems of regression, tracking, classifi-
cation and others. The prototypical example we con-
sider is that of gp regression, e.g., in which x might
be time and y an air temperature, although the algo-
rithms described below are applicable to any choice of
prediction model.

Associated with a matrix of inputs Xd (whose rows
represent individual points in input space), we have
a vector of observations zd; given these data, we are
interested in inferring the value of y, y⋆, at a vector
of inputs x⋆. As with our convention above, we’ll as-
sume Xd and x⋆ are always known and drop our prob-
abilities’ explicit dependence upon them. We have a

prediction model p
(

y⋆|zd, φ
)

, defined by hyperparam-
eters φ ∈ Φ. These are commonly unknown a pri-

ori and under-determined by data, and hence must be
marginalised. Therefore, we must evaluate

p
(

y⋆|zd

)

=

∫

p
(

y⋆|zd, φ
)

p
(

zd|φ
)

p(φ) dφ
∫

p
(

zd|φ
)

p(φ) dφ
, (7)

in which we have marginalised φ. We’ll again assume
the Gaussian prior (4) for p(φ), although, as before,
other forms are possible. Typically, both our likeli-
hood p(zd|φ) and predictions p(y⋆|zd, φ), treated as
functions of φ, exhibit a functional form that renders
these integrals non-analytic.

As such, we employ quadrature, evaluating

q(φ) := p(y⋆|zd, φ)

r(φ) := p(zd|φ)

at samples φs, giving qs := q(φs) and rs := r(φs).
Our evaluation of both q and r at the same vector
of hyperparameter samples φs is not absolutely nec-
essary, but results in notational convenience and some
computational savings, as we’ll see later. Note that
the more complex our model, and hence the greater
the number of hyperparameters, the higher the dimen-
sion of the hyperparameter space we must sample in.
The complexity of models we can practically consider
is therefore limited by the curse of dimensionality. We
put the problem of selecting the optimal sample lo-
cations φs aside; we assume we have relatively useful
samples, however obtained, and look to make optimal
use of them.

Using such samples, traditional Monte Carlo would
approximate as

∫

q(φ) r(φ) p(φ) dφ
∫

r(φ) p(φ) dφ
≃ 1

|s|

|s|
∑

i=1

q(φi) , (8)

where, referring to (3) and (5), we substitute q(φ) for
f(φ) and

p(φ|zd) :=
r(φ) p(φ)

∫

r(φ) p(φ) dφ
(9)

for p(φ|I). Note that the denominator integral ren-
ders (9) non-analytic, so that drawing samples from it
requires some care (neal, 1993). We will now inves-
tigate the use of Bayesian quadrature techniques for
this problem.

We assign gp priors to the functions

q̃ := log(q)

r̃ := log(r) ,

with Gaussian covariances of the form (1). These
choices of prior distribution are motivated by the fact
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that both q and r are strictly positive and possess a
large dynamic range.2 We now use these priors to per-
form inference about the functional ̺[q̃, r̃], defined as

̺[q̃, r̃] := p
(

y⋆|q̃, r̃, zd

)

=

∫

q(φ) r(φ) p(φ) dφ
∫

r(φ) p(φ) dφ
(10)

=

∫

exp
(

q̃(φ)
)

exp
(

r̃(φ)
)

p(φ) dφ
∫

exp
(

r̃(φ)
)

p(φ) dφ

with functional derivatives

∂̺

∂q̃(φ)
[q̃, r̃] =

exp
(

q̃(φ)
)

exp
(

r̃(φ)
)

p(φ)
∫

exp
(

r̃(φ)
)

p(φ) dφ

and

∂̺

∂r̃(φ)
[q̃, r̃] =

exp
(

q̃(φ)
)

exp
(

r̃(φ)
)

p(φ)
∫

exp
(

r̃(φ)
)

p(φ) dφ

− exp
(

r̃(φ)
)

p(φ)
∫

exp
(

q̃(φ)
)

exp
(

r̃(φ)
)

p(φ) dφ
(∫

exp
(

r̃(φ)
)

p(φ) dφ
)2 .

Note that r(φ) appears in both the numerator and de-
nominator integrals of ̺, introducing correlations be-
tween the values we estimate for them. For this rea-
son, we must consider the ratio as a whole rather than
performing inference for the numerator and denomi-
nator separately. This means that ̺ is not linear in
our variables q̃ and r̃, unlike the 〈f〉 of (3), preventing
the analytic stage of the inference process described
in Section 3. As such, our introduction of the simi-
larly non-linear transform exp does no real additional
harm. This non-linearity means that we must perform
inference about the functional ̺[q̃, r̃] itself.

We make a linearisation approximation3 for ρ, forcing
ρ to be, as desired, affine in q̃ and r̃. Before proceeding,
we introduce separate gp models over q(φ) and r(φ),
the non-log functions. Then mq|s is the gp conditional
mean (as per (2)) for q given observations q(qs). For
these gps (over the non-log quantities), we take zero
prior means and Gaussian covariances of the form (1).

We perform the linearisation of ρ[q̃, r̃] around the
point defined by q̃0 := log(mq|s) and r̃0 := log(mr|s).

We make the definitions ρ0 := ρ[q̃0, r̃0],
∂ρ0

∂r̃(φ) :=
∂ρ

∂r̃(φ) [q̃0, r̃0], and for future notational convenience, as-

sume that if we condition on ̺0, we are also condi-
tioning on its functional derivatives. This linearisation

2In practice, we use the transform log (r(φ)/γr + 1)
where γr := 100 max(rs). This give better resolution
of some numerical issues, and allows us to assume the
transformed quantity has zero mean. For the sake of sim-
plicity, we leave further technical details to the appendix
(osborne, et al., 2012).

3Note that this linearisation is equivalent to tak-
ing another gp for ρ, with the affine covariance
K̺

[

(q̃, r̃), (q̃′, r̃′)
]

:=
∫

q̃(φ)q̃′(φ)dφ+
∫

r̃(φ)r̃′(φ)dφ+ ω2

gives us a convenient mean for ̺,

m(̺[q̃, r̃]|̺0) = ̺0 +

∫

∂̺0
∂q̃(φ)

(

q̃(φ)− q̃0(φ)
)

dφ

+

∫

∂̺0
∂r̃(φ)

(

r̃(φ) − r̃0(φ)
)

dφ . (11)

That is, we can now write

̺0 := ̺[q̃0, r̃0] =
m(〈qr〉|qs, rs)

m(〈r〉|rs)
(12)

along with its functional derivatives

∂̺0
∂q̃(φ)

:=
∂̺

∂q̃(φ)
[q̃0, r̃0]

=
m(q(φ)|qs) m(r(φ)|rs) p(φ)

m(〈r〉|rs)

∂̺0
∂r̃(φ)

:=
∂̺

∂r̃(φ)
[q̃0, r̃0]

=
m(r(φ)|rs) p(φ)

m(〈r〉|rs)

(

m(q(φ)|qs)−
m(〈qr〉|qs, rs)

m(〈r〉|rs)

)

.

Note that ̺0 and its functional derivatives are ana-
lytic; our choice of q̃0 and r̃0 allowed us to resolve the
integrals required.

We now motivate our linearisation. Of course, we
don’t actually have access to entire q̃ and r̃ func-
tions, over which we will have to marginalise. Imag-
ine, for the purposes of building intuition, these func-
tions being parameterised by the arbitrarily large but
finite vectors of their values, q̃f and r̃f , at the vec-
tor φf = {φ1, . . . , φ|f |}. Our integrals over q̃ and r̃
can be arbitrarily well-represented by equivalent sums
over these values q̃f and r̃f , which we use to represent
̺ for any values of q̃f and r̃f—inference for ̺ is now
unnecessary. Hence for some αf and some βf

m(̺|q̃s, r̃s) ≃
∫∫

∑|f |
i=1 αi e

q̃i er̃i
∑|f |

i=1 βi er̃i

×N
(

q̃f ;m(q̃f |q̃s), C(q̃f |q̃s)
)

×N
(

r̃f ;m(r̃f |r̃s) , C(r̃f |r̃s)
)

dq̃f dr̃f (13)

The multivariate Gaussians over q̃f and r̃f signifi-
cantly restrict the volume of function space that needs
to be integrated over. The other term in our integrand
is a ratio of weighted sums of exp(q̃) and exp(r̃). For
1 ≤ i ≤ |f |, the Gaussian over q̃i will vary as exp(−q̃2i ),
where the ratio of sums will vary only as exp(q̃i), and
similarly for r̃j . This forms the justification for our lin-
earisation approach—around the narrow peaks of our
gps, the slow variation of our ratio of integrals can be
well approximated as affine. We can visualise this fact
in two dimensions, as per Figure 1.
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̺(q̃)

p(q̃|q̃s)q̃j

q̃i
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0
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̺(r̃)

p(r̃|r̃s)r̃j

r̃i
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−2

0

2

Figure 1: A comparison of bivariate Gaussians (p(q̃|q̃s) and p(r̃|r̃s)) and a ratio of weighted sums of exponentials
of those two variables (̺); both terms as per the integrand of (13). It can be seen that around the narrow peaks
of either Gaussian, the ratio can be reasonably approximated as linear.

We now define

∆q̃ := mq̃|s − q̃0 = mq̃|s − log(mq|s)

∆r̃ := mq̃|s − r̃0 = mr̃|s − log(mr|s) ,

the differences between the gp means over our trans-
formed quantities and the transformed gp means over
original quantities. We expect ∆r̃ to be small, as per
the example in Figure 2. This implies that r̃0 is close
to the peaks of our Gaussians over r̃, rendering our
linearisation appropriate.

We now return to our predictive posterior;

p(y⋆|̺0,∆q̃,∆r̃, q̃s, r̃s, zd)

=

∫∫∫

p(y⋆|q̃, r̃, zd) p(̺|̺0, q̃, r̃)

× p(q̃|q̃s) p(r̃|r̃s) d̺ dq̃ dr̃

=

∫∫∫

̺[q̃, r̃] p(̺|̺0, q̃, r̃)

×N
(

q̃;mq̃|s, Cq̃|s

)

N
(

r̃;mr̃|s, Cr̃|s

)

d̺ dq̃ dr̃

=

∫∫

m(̺[q̃, r̃]|̺0)

×N
(

q̃;mq̃|s, Cq̃|s

)

N
(

r̃;mr̃|s, Cr̃|s

)

dq̃ dr̃

= m
(

̺[mq̃|s,mr̃|s]
∣

∣̺0
)

= ̺0 +

∫

∂̺0
∂q̃(φ)

∆q̃(φ)dφ +

∫

∂̺0
∂r̃(φ)

∆r̃(φ)dφ. (14)

As with any linearisation approximation, this final
estimate is the value at the selected point (q̃0, r̃0),
plus two correction factors modelling the influence of
the first derivatives. These correction factors contain
a further two non-analytic integrals, over φ. For-
tunately, they’re not too far away from being ana-
lytic; almost all terms with dependence on φ within
those integrals are Gaussian. The exceptions are the
log(mq|s) and log(mr|s) terms within ∆q̃ and ∆r̃. As
such, we perform another stage of Bayesian quadra-
ture by treating ǫrq := mr|s∆q̃, ǫrr := mr|s∆r̃ and
ǫqr := mq|s ∆r̃ as unknown functions of φ. For these
functions we take Gaussian process priors with zero
prior mean and Gaussian covariance (1). See Fig-
ure 2b for an illustrative example function, that is

a

 

 

r̃s

log(mr|s)

mr̃|s

φ

r̃

−10 0 10 20 30

×10−3

0

5

10

(a)

b

 

 

±
√
V ǫrr|c

mǫrr|c

ǫrr,c

ǫrr
ǫrr

φ
−10 0 10 20 30

−0.5

0

0.5

1

(b)

Figure 2: (a) Note that log(mr|s) resembles mr̃|s; (b)
ǫrr represents the difference between the two functions,
scaled by mr|s.

smooth and possesses a zero mean. Note that the
choice to place a gp on ǫrq rather than directly onmr|s,
log(mq|s) or similar quantities simplifies our analysis
and improves numerical performance.

We must now choose sample points φc at which to
evaluate our ǫ functions. For simplicity, and due to
their similar structure, we choose a common vector
φc for all such functions, giving us observations ǫrq,c,
ǫrr,c and ǫqr,c. φc should firstly include φs, at which
points we know that ǫ is equal to zero. Note firstly
that a simple heuristic for determining the ‘best’ sam-
ples (in the sense of samples with which to fit a gp)
is to select those samples at extrema. With reference
to Figure 2b, note that the peaks and troughs of ǫ
occur at points far-removed from φs, but no further
away than a few input scales. This is where the trans-
formed mean for q or r is liable to differ most from the
mean of the transformed variable (and the appropriate
∆ extremised). That is, we would like to select φc as
points as far away from all points in φs as possible,
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while still remaining within a few input scales. Find-
ing φc hence requires solving the largest empty sphere
problem, which we can solve with the use of a Voronoi
diagram (voronoi, 1907; shamos and hoey, 1975;
okabe and suzuki, 1997). Where this requires com-
putation in excess of that afforded by our allowance, we
instead construct a kd-tree (bentley, 1975) for our
φs, and select φc as the centres of the hyper-rectangles
defined by the splitting hyperplanes of the tree.

By marginalising over the unknown ǫ functions, then,
we arrive at our final posterior;

p(y⋆|ǫrq,c, ǫrr,c, ǫqr,c, ̺0, q̃s, r̃s, zd) = ̺0 + Cq̃ + Cr̃ ,

where the two correction factors are

Cq̃ :=
m(〈qǫrq〉|qs, ǫrq,c)

m(〈r〉|rs)

Cr̃ :=
1

m(〈r〉|rs)
×
(

m(〈qǫrr〉|qs, ǫrr,c)

−m(〈ǫrr〉|ǫrr,c)
m(〈qr〉|qs, rs)

m(〈r〉|rs)

)

.

Note that if we wish to compute the posterior mean
for y⋆, we need merely redefine q(φ) as m(y⋆|zd, φ).
Of course, as the mean is not usually strictly non-
negative, we can place a gp on q directly, hence requir-
ing no correction factor for q̃. Similarly, we can com-
pute the posterior variance for y⋆ by redefining q(φ)
as the second moment

∫

y2⋆ p(y⋆|zd, φ) dy⋆. The pos-
terior variance is then given by (14) minus the squared
posterior mean.

5 Empirical Evaluation

We now turn to an empirical evaluation of our novel
algorithm, bqr, built around the approach outlined
in section 4. Explicitly, we used (14) to compute the
posterior density for a predictant y⋆, and appropriate
modifications to compute its mean and variance.

We compared our method against a number of alterna-
tives. Firstly, we use maximum likelihood (ml), which
approximates the likelihood function r(φ) as the Dirac
delta function δ(φ − φm), where φm is the hyperpa-
rameter sample with maximal likelihood. Clearly, this
approach is inappropriate for multimodal likelihoods.
Next, we use traditional Monte Carlo (mc), which uses
(8) to estimate our ratio of integrals. We also compare
against näıve Bayesian quadrature (nbq), in which
both denominator and numerator integrals in (7) are
treated independently and the product q(φ)r(φ) in the
numerator modelled using a single gp. This allows us
to quantify the influence of modelling correlations be-
tween numerator and denominator integrals. We also
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Figure 3: Test functions used for a one-dimensional
integration example.

Table 1: rmse for synthetic one-dimensional integral.

ml mc nbq bqz bqr

slice 0.0120 0.0184 0.0167 0.0044 0.0043

hmc 0.0120 0.0217 0.0203 0.0046 0.0042

test against what we call bqz, the algorithm identi-
cal to bqr except that the first derivatives of ̺0 are
assumed to be zero. This allows us to evaluate the
significance of the correction factors due to our lin-
earisation, which are assumed zero for bqz. As such,
bqz does not make use of the logarithmic transform.

The samples φs required to perform quadrature were
obtained using Markov Chain Monte Carlo methods,
to simulate samples from the posterior for φ, (9).
In particular, we used Hybrid Monte Carlo (hmc)
(duane, et al., 1987) and Slice Sampling (neal,
2003). While techniques exist (minka, 2000) to ob-
tain samples more suitable for Bayesian quadrature,
we wished to give mc every possible advantage rela-
tive to Bayesian alternatives.

The diagonal input scale matrices wq and wr (giv-
ing a number of quadrature hyperparameters equal
to twice the dimension of φ) were found by maximis-
ing their respective marginal likelihoods using a multi-
start gradient-ascent method. The input scales wr̃

were taken as identical to wr (and similarly wq̃ = wq),
and the input scales for all ǫ quantities were taken as
half of wr: these choices worked well in practice (see
Figure 2). We have stronger prior information for our
prior means µq and µr, which were also found to have
a great influence on ultimate performance. Firstly,
likelihood functions are typically highly peaked and
localised around φm, and so we take a zero mean for
µr. Given this, our integrals are usually dominated by
r(φm); we took µq as q(φm) so that regression for q
was most accurate near this critical value.

Our first experiment was a synthetic, one-dimensional
example for the q and r functions depicted in Figure 3,
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and for a zero mean, unit variance Gaussian prior p(φ).
These functions were created using a mixture of Gaus-
sians, such that we could determine the exact result
(0.5709) for our ratio of integrals (10). We then com-
pared the root mean squared error (rmse) between
the estimates produced by our various methods and
this exact result. Table 1 tabulates the scores over the
last 200 samples (thus permitting a 50 point ‘burn-in’)
and 100 trial sample chains, and Figure 4 the results
as a function of the number of samples. Our methods
comfortably outperform mc and nbq, and for the ma-
jority of the sample history our correction factors give
a small improvement. For clarity, ml results were not
plotted; its rmse plateaus once φm is found, typically
about 10 samples in. On the basis of these results,
we choose to perform solely slice sampling (of up to
500 samples) henceforth, to again favour mc relative
to our methods.

We now consider two examples of gp regression, in
which we must marginalise over hyperparameters φ.
For gps, computing a single likelihood r(φ) requires
the computationally onerous inversion (or finding the
Cholesky factor) of a covariance matrix of size equal to
the number of data, D. Hence evaluating N hyperpa-
rameter samples takes a considerable quantity of time:
O(D3N). In comparison, the cost of evaluating bqr

(dominated by the cost of finding the Cholesky factor
of a covariance matrix of size equal to N) is typically
modest, O(N3). Having at great expense evaluated all
our hyperparameter samples, it seems prudent to use
them in the most intelligent way possible.

For both examples, we took independent Gaussian pri-
ors (such that λφ is diagonal) for the various hyper-
parameters of the model, each with zero mean and a
variance of four. We first tested on a synthetic re-
gression example drawn from friedman (1991) and
rasmussen and ghahramani (2003), with eight hy-
perparameters to marginalise. Specifically, we used
the function

f(x1, x2, x3, x4, x5) :=

10 sin(πx1x2) + 20(x3 − 1/2) + 10x4 + 5x5

with zero mean, unit variance Gaussian noise. We per-
formed gp regression for 100 test points given 100 ob-
servations, all independently drawn from the uniform
[0, 1]5 distribution; we marginalised five input scales,
an output scale, a noise variance and a prior mean.
We evaluated the rmse of the predictive means pro-
duced by our various methods both as a function of
the number of samples, displayed in Figure 5a, and
over all but the first 50 samples, listed in table 2. It
can be seen that all non-mc methods perform roughly
equally, due to the presence of a strong dominant peak
in the likelihood function.
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Figure 4: Error in estimates for one-dimensional inte-
gral as a function of the number of samples.

We also tested on light curves from the first month
of operation of the Kepler mission (borucki, et al.,
2011). Here we are required to regress flux from a star,
as a function of time, in order to infer the rotation rate
and other properties of dark spots on the star’s surface.
For this, we used a gpmodel with a constant mean and
decaying-periodic covariance, giving six hyperparame-
ters in total to marginalise. The data is corrupted by
non-trivial noise mechanisms, and the final results are
sensitive to our regression, so it is important that cor-
rect inference about our model hyperparameters is per-
formed. A large number of datasets exist; we choose
one in particular for which the likelihood function is
highly multi-modal. Given the lack of ground truth
for this dataset, we evaluated predictive performance
by splitting the data into 151 point training (zd) and
testing (z⋆ := {z1, . . . , z|⋆|}) vectors, and computed

ll =
∑|⋆|

i=1 logN (zi;mi, Ci) for the predictive means
m and variances C produced by each method. This
allows us to evaluate the the quality of our predictive
uncertainties. ll is plotted in Figure 5a as a function
of the number of samples, and over all but the first 50
samples, listed in Table 3. It can be seen that bqr

is best able to cope with the complicated, multimodal
likelihood surface.

bqr was the most broadly successful of those tested
in these experiments. Note that ml is completely un-
qualified to represent the full posterior: for gp predic-
tion, for example, it will always provide a unimodal
Gaussian posterior. In contrast, the other methods,
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Figure 5: Performance for gp regression on (a) synthetic and (b) Kepler data. bqz not plotted for clarity.

Table 2: rmse for gp prediction on synthetic data.

ml mc nbq bqz bqr

1.1722 1.5551 1.2246 1.1805 1.1805

Table 3: ll for gp prediction on Kepler data.

ml mc nbq bqz bqr

-10.448 -12.563 -12.948 -10.310 -10.262

by mixing the Gaussian predictions from samples with
different hyperparameters, can capture more compli-
cated distributions. This means that while ml is able
to produce effective mean predictions, it is prone to un-
derestimates of predictive variances, such as lead it to
a worse overall fit on the real Kepler data. mc’s waste-
ful use of samples means that its estimates converge
more slowly than Bayesian alternatives, despite our
use of sampling methods explicitly designed to meet
its needs. nbq estimates exhibit occasional wild fluc-
tations, largely due to the poor conditioning of a co-
variance matrix over hyperparameter samples that are
excessively similar. This leads its gp to assign exces-
sive probability mass to negative likelihoods. Due to
our approximations, bqr is not immune to this prob-
lem, but our approach does render it significantly more
robust: its correction factors ameliorate this effect in
trying to force the integrand to be positive. Our mod-
elling of the correlations between integrals over r(φ)
also grant bqr superior performance for multi-modal,
heavy-tailed likelihoods.

We conclude that constraining functions to be positive
was overall probably less significant than dealing with
the correlations in the numerator and denominator,
given the relative performances of nbq (which does
not model correlations), bqz (which does not make
use of the log transform) and bqr.

6 Conclusions

Our algorithm, bqr, outperformed competitors in real
and synthetic tasks requiring the numerical compu-
tation of posterior probabilities. We have success-
fully demonstrated that it is possible to use Bayesian
methods to resolve the questions of approximation re-
quired to perform Bayesian inference. In particular,
we have demonstrated the worth of acknowledging rel-
evant prior information: here, that our integrands are
non-negative and correlated.

In testing, we have focused on small numbers of sam-
ples, suitable for applications where evaluating the
integrand is computationally demanding. This is
due to the not-insignificant computational burden im-
posed by Bayesian quadrature’s requirement to find
the Cholesky factor of covariance matrices of size equal
to the number of samples. This difficulty can be
somewhat eased by integrating sparse gp methods
(quiñonero-candela and rasmussen, 2005; snel-
son and ghahramani, 2006; walder, et al., 2008;
lázaro-gredilla, et al., 2010), which approximate
the covariance matrix as sparse, an avenue we would
like to investigate. We could also investigate the minor
modification of our approach for general integration
tasks where the integrand is non-negative, to compute,
for example, marginal likelihoods.
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