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Abstract

Lipschitz quadrature methods provide an approach to one-dimensional numerical
integration on bounded domains. On the basis of the assumption that the integrand
is Lipschitz continuous with a known Lipschitz constant, these quadrature rules
can provide a tight error bound around their integral estimates and utilise the Lip-
schitz constant to guide exploration in the context of adaptive quadrature. In this
paper, we outline our ongoing work on extending this approach to settings where
the Lipschitz constant is probabilistically uncertain. As the key component, we
introduce a Bayesian approach for updating a subjectively probabilistic belief of
the Lipschitz constant. Combined with any Lipschitz quadrature rule, we obtain
an approach for translating a sample into an integral estimate with probabilistic
uncertainty intervals. The paper concludes with an illustration of the approach
followed by a discussion of open issues and future work.

1 Introduction
The field of quadrature deals with algorithms for the computation of estimates of integrals of func-
tions on the basis of a finite sample. In this work, we will employ Bayesian inference to infer
probabilistic bounds on the definite integral

∫
I
f(x) dx (where domain I ⊂ X is bounded) on the

basis of a finite sample Dn = {(si, fi)|fi = f(si), i = 1, ..., Nn} of integrand f : I ⊂ X → R.

As with any type of inference, a priori assumptions are key since otherwise, generalisation is im-
possible. As a first step, one assumes f ∈ Kprior for some set of functions Kprior. For instance,
many classical quadrature techniques assume that this a priori class of function is a subset of contin-
uously differentiable functions; Monte-Carlo methods frequently provide error bounds on the basis
that Kprior is a subset of the set of square-integrable functions. In Lipschitz quadrature [1], one
assumes Kprior is contained in the set

LipI(L) =
{
φ : I ⊂ X → R|∀x, x′ ∈ I : |φ(x)− φ(x′)| ≤ L dX (x, x

′).
}

(1)

of L− Lipschitz continuous functions for a given dX and known Lipschitz constant L (where in [1]
only the one-dimensional case with X ⊂ R, dX (x, x′) = |x− x′| is considered).

Once sample Dn is known, we can combine the information contained therein with the information
available a priori. At the very least, we can define a posterior hypothesis spaceKpost by falsification.
That is, we eliminate all hypotheses from Kprior that could not have generated the sample. In the
case of noise-free data, this might be done as per Kpost(Dn) = Kprior ∩ K(Dn) where K(Dn) ={
φ : X → Y| ∀i ∈ {1, ..., Nn} : φ(si) = fi

}
is the set of sample-consistent functions. In many

cases, forming this posterior set facilitates the derivation of worst-case bounds on the inferences
made. For instance, in the aforementioned case of Kprior = LipI(L) being Lipschitz functions with
a known Lipschitz constant L, it is possible to compute Lipschitz continuous upper and lower bound
functions un(·;L) : x 7→ supφ∈Kpost φ(x) and ln(·;L) : x 7→ infφ∈Kpost φ(x), respectively [2,3,11]
that allow bounding the maxima, minima, values and definite integrals of any sample-consistent
target function. In this case, f ∈ Kpost ⊆ Eunln (L) = {φ|ln(x;L) ≤ φ(x) ≤ un(x;L),∀x} where
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the set Eunln (L) of all functions bounded by functions ln(·;L), un(·;L) shall be called the enclosure.
Since the bounding functions depend on Lipschitz constant L, the enclosure also depends on this
constant. In [3], we have shown that both bounding functions uniformly converge to f in the limit
of a dense sample.

In the quadrature case, it follows with ease that the definite integral on compact domain I ⊂ X
of any sample-consistent L− Lipschitz function is contained in the interval [Sl(L), Su(L)], where
Sl(L) =

∫
I
ln(x;L) dx and Su(L) =

∫
I
un(x;L) dx are the integrals of the upper and lower bound

functions, respectively. That is,

∀f ∈ Kpost(L) :
∫
I

f(x) dx ∈
[
Sl(L), Su(L)

]
. (2)

The integrals Su(L), Sl(L) can be computed in closed-form for one-dimensional compact domains
I ⊂ R [1]. Therefore, they are suitable bounds for the definite integral of the target function for any
target f ∈ Kpost with known Lipschitz constant L.

Apart from such worst-case bounds, probabilistic approaches have become increasingly popular. In
Bayesian inference, a priori knowledge is stated via probability measures that express subjective
beliefs over the veracity of hypotheses about the ground-truth (e.g. of the integrand being some
φ ∈ Kprior). In Bayesian inference with Gaussian processes (GPs) [9] one typically chooses a GP
prior over the integrand [5–8]. In the basic setup, here the a priori set coincides with the closure
of the span of eigenfunctions of the kernel operator of the covariance function of the prior [10].
The prior encodes a probabilistic belief over this set Kprior of candidate integrands. A sample of
the integrand is then used to compute a resulting posterior belief measure over the integrand. This
posterior is then utilised in various ways to obtain information about the integral.

In contrast to these works, we assumeKprior =
⋃
L∗≥0 LipI(L

∗) is the set of all Lipschitz functions
with any constant. We implicitly place a prior distribution over Kprior by placing a distribution
over the smallest Lipschitz constant L∗ of the integrand. The posterior is inferred on the basis of
the observed data Dn. Connecting to the worst-case approaches in the aforementioned Lipschitz
case, we can obtain probabilistic posterior bounds that also apply to multi-dimensional integration-
domains. While in general, computation of these bounds might involve the necessity to evaluate
intractable integrals, we propose to consider the conjugate pair of uniform likelihoods and Pareto
priors. This yields posterior densities and bounds that can be computed in closed-form.

2 Bayesian Lipschitz Constant Inference and Integral Bounds
Inference over the Lipschitz constant of the integrand. In Eq. 2 we provided efficiently com-
putable worst-case bounds around the integral estimates. These bounds hold provided the target is
Lipschitz with some known constant L ∈ R≥0. In practice however, one may be uncertain about
the constant. In this case, it may be desirable to (i) take this uncertainty into account when utilising
the resulting prediction bounds and (ii) ideally, one desires an inference rule that can update one’s
belief over the Lipschitz constant as more data becomes available.

To address these desiderata we propose a Bayesian approach as follows:

Let π0 : R+ → R+ be an a priori density over smallest Lipschitz constant L∗ = min{L ≥ 0|f ∈
LipI(L)} of the integrand f . According to Bayes’ theorem, we can calculate the posterior density
π(L∗ = ·|Dn) over the smallest Lipschitz constant as per

π(L∗ = `|Dn) =
π(Dn|L∗ = `)π0(L

∗ = `)∫
R π(Dn|L∗ = `)π0(L∗ = `) d`

.

In general, the posterior density ` 7→ π(L∗ = `|Dn) may not be computable in closed- form and
might have to be approximated utilising standard quadrature methods. Instead, we propose to utilise
a combination of Pareto priors with uniform likelihoods. Making simplifying assumptions, this
allows us to model maximal ignorance over the true best Hölder constant L∗ while at the same time
allowing for closed-form expressions.

For a choice of two-dimensional indices k ∈ In ⊆ {(i, j)| dX (si, sj) > 0, j < i, i, j = 1, . . . , Nn}
we define the ratios rk :=

|fi−fj |
dX (si,sj)

which can be computed from the sample Dn. A priori we are
uncertain about them. Hence each a priori uncertain rk can be modelled as a r.v. Rk. By definition
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Figure 1: Bayesian Lipschitz constant estimation of the underlying integrand f : x 7→ |sin(x)|
on domain I = [0, 2π]. Left plot: Depicts f as well as the random samples D1 ⊂ D2 ⊂ D3

generated i.i.d. uniformly at random. We had |D1| = 4, |D2| = 40, |D3| = 140. Right plot: The
approximately uninformative prior over the best Lipschitz constant of the integrand (blue plot), as
well the posterior density functions conditioned on ratio sequences %1 (magenta plot) and %2 (cyan
plot) obtained by computing all ratios from the data sets D1 and D2, respectively. Note, how the
posterior densities gravitate towards the true best Lipschitz constant L∗ = 1 with increasing sample
size (π(·|%3) omitted since it was a very high and narrow peak around ` = 1).

of the best Lipschitz constant L∗ = sups,s′
|f(s)−f(s′)|

dX (s,s′) we have L∗ ≥ maxk∈In rk =: L̂(n).
We assume that the sample generally does not contain additional information about L∗ beyond the
chosen ratio sequence %n :=

(
rk

)
k∈In

and hence, π(L∗ = ·|Dn) = π
(
L∗ = ·|%n

)
.1 In the absence

of additional a priori assumptions a suitable ignorance likelihood is the uniform density

π
(
Rk = rk|L∗ = `

)
=

{
0, rk > `
1
` , otherwise.

Assume we choose the prior π0 : ` 7→ π0(L
∗ = `) to follow some Pareto distribution Pa(b, ν).

Under the assumption of independence of the chosen ratios in %n we can reduce our problem to the
“taxicab” problem discussed by Minka [4] and appealing to conjugacy, the posterior π

(
L∗ = ·|%n

)
again follows a Pareto distribution Pa(mn, |In|+ ν) with density

π(L∗ = `|%n) =

{
(|In|+ν)mn|In|+ν

`|In|+ν+1 , ` ≥ mn

0, otherwise
(3)

where mn = max{b,maxk∈In rk}. Note, the case of an uninformative prior arises in the limit of
ν, b→ 0 [4].

An example of our Bayesian Lipschitz constant inference method is given in Fig. 1. Here we started
with an approximately uninformative Pareto prior Pa(0.001, 0.01) overL∗. Providing three samples
of increasing size we documented the resulting posterior densities. As expected, they seemed to
converge to the correct Dirac posterior δ(· − L∗) with increasing sample size.

Application to Lipschitz quadrature. We can now turn to the question of utilising the posterior
belief over the best Lipschitz constant in our integration bounds. Statement (2) holds, provided the
parameters L is chosen at least as large the smallest Lipschitz constant L∗ of the target function.
Thus, in the case of Bayesian uncertainty, if we set L to a value Lθ such that the probability of
Lθ < L∗ is less than θ, the prediction bounds Sl(Lθ), Su(Lθ) are valid with probability of at least
1 − θ. Under the assumptions described above that yield the posterior Pareto density π(·|%n) as
per Eq. 3, we could find Lθ as follows: we insert Lθ into the pertaining cdf of the posterior Pareto
distribution. Setting the resulting term to less than or equal to θ yields an inequality. Solving for this
Lθ yields the desired (1 − θ) -confidence bound on the Lipschitz constant. For the posterior as per

1During the workshop, we have come to believe that this might not be true in general and hence, conditioning
on all ratios might affect the inference in a manner that will be subject to further investigation.
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Figure 2: Example quadrature problem of
estimating the integral

∫ π
0
|sin(x)| dx =

4. The Bayesian integral estimates pertain-
ing to posterior densities π(·|%1), π(·|%2)
and π(·|%3) are the dots at abscissa po-
sitions 1.0, 2.0 and 3.0, respectively.
The error bars depict the error intervals
[Sl(Lθ,i), Su(Lθ,i)] for θ = 0.001 and i =
1, ..., 3. Note how the error bars shrink with
increasing data and quite accurately esti-
mate the true integral for the largest sample
D3.

Eq. 3 this gives Lθ = max
{
L̂(n), L̂(n) exp(− log θ

|In| )
}
. This bound can then be used as the Lipschitz

parameter in a Lipschitz quadrature rule.

To give a concrete example, we computed three such bounds, Lθ,1, Lθ,2, Lθ,3, on the basis of the
posterior densities π(·|%1), π(·|%2) and π(·|%3), respectively. Here we opted for high-confidence
integration bounds choosing θ = 0.001. We then computed three integral estimates and bounds
of the integrand f(x) = |sin(x)| using a standard Lipschitz quadrature rule [1] parameterised by
Lθ,1, Lθ,2, Lθ,3, respectively. The resulting integration estimates and bounds are depicted in Fig.
2. The plots illustrate that our method improved in predicting the correct integral with increasing
sample size. Furthermore, the ground truth integral

∫ 2π

0
f(x) dx = 4 always was contained in the

confidence error intervals [Sl(Lθ,i), Su(Lθ,i)] (i ∈ {1, 2, 3}).
Complexity. In general, the Bayesian inference rule requires a numerical approximation method
which will dominate the computational effort. In contrast, for our closed-form expressions derived
for the Pareto priors, the computational complexity of Lθ scales linearly in the number of ratios
|%n|, which, if all ratios are chosen to be conditioned on, is at most quadratic in the sample size. The
Lipschitz quadrature method’s complexity is linear in the sample size. So, the effort ranges from
linear to quadratic, depending on how many ratios we choose to condition on.

3 Conclusions
We started with introducing a Bayesian approach for inferring the Lipschitz constant of a function
based on a finite sample. From the posterior densities we can derive confidence bounds on the best
Lipschitz constant which we proposed to utilise in conjunction with Lipschitz quadrature methods.
This merger yields integral estimates that hold with adjustable subjective probability.

When employing Pareto priors to model one’s uncertainty about the best Lipschitz constant one
can model ignorance priors. Furthermore, we have given closed-form expressions of the estimates
and bounds of the definite integral by conditioning on the chosen slope ratios computed from the
sample. The expressions were derived under the assumption that these ratios are independently
uniformly distributed given the Lipschitz constant.

Future work will further elucidate these assumptions and the impact of this approach on the conser-
vatism of the resulting bounds. In particular, we need to understand how the resulting confidence
bound Lθ relates to the true 1 − θ-confidence bound of the best Lipschitz constant one would ob-
tain from the full Bayesian posterior distribution conditioned on the sample rather than the ratio
sequence. This might require studying the true full likelihood π(Dn|L∗). To this end, a generative
model of Lipschitz functions might have to be considered. Answering these question might also
shed light on the question of which ratios one should ideally condition on.

Our exposition focussed on the case of definite integration on one-dimensional domains. Extensions
to multi-dimensional and unbounded domains, as well as to noisy samples, are in preparation. More-
over, we would like deploy our quadrature method in the context of inference and control. Here, the
integration bounds can be useful to avoid underestimating the risk of a control decision. This can
become especially important in situations where real-time requirements prohibit the evaluation of a
large number of sample points of the integrand.
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