Linear Algebra

2022

  1. Posterior and Computational Uncertainty in Gaussian processes
    In Advances in Neural Information Processing Systems (NeurIPS) 2022

2020

  1. Probabilistic Iterative Methods for Linear Systems
    Cockayne, Jon, Ipsen, Ilse CF, Oates, Chris J, and Reid, Tim W
    arXiv preprint arXiv:2012.12615 2020
  2. A Probabilistic Numerical Extension of the Conjugate Gradient Method
    Reid, Tim W, Ipsen, Ilse CF, Cockayne, Jon, and Oates, Chris J
    arXiv preprint arXiv:2008.03225 2020
  3. Probabilistic Linear Solvers for Machine Learning
    In Advances in Neural Information Processing Systems (NeurIPS) 2020

2019

  1. A Bayesian conjugate gradient method (with discussion)
    Bayesian Analysis 2019

2017

  1. Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity
    Schäfer, Florian, Sullivan, T. J., and Owhadi, Houman
    arXiv:1706.02205 [cs, math] 2017
  2. Bayesian Inference of Log Determinants
    Fitzsimons, Jack, Cutajar, Kurt, Osborne, Michael, Roberts, Stephen, and Filippone, Maurizio
    In Uncertainty in Artificial Intelligence 2017

2016

  1. Probabilistic Approximate Least-Squares
    Bartels, S., and Hennig, P.
    2016

2015

  1. Stochastic determination of matrix determinants
    Dorn, Sebastian, and Enßlin, Torsten A.
    Phys. Rev. E 2015
  2. Probabilistic Interpretation of Linear Solvers
    Hennig, P.
    SIAM J on Optimization 2015

2012

  1. Improving stochastic estimates with inference methods: Calculating matrix diagonals
    Selig, Marco, Oppermann, Niels, and Enßlin, Torsten A.
    Phys. Rev. E 2012