Partial Differential Equations

2022

  1. Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers
    arXiv preprint 2022

2021

  1. Bayesian Numerical Methods for Nonlinear Partial Differential Equations
    Wang, Junyang, Cockayne, Jon, Chkrebtii, Oksana, Sullivan, Timothy John, Oates, Chris, and others,
    Statistics and Computing 2021

2018

  1. Towards information-optimal simulation of partial differential equations
    Leike, Reimar H., and Enßlin, Torsten A.
    Phys. Rev. E 2018
  2. Consistency and convergence of simulation schemes in Information field dynamics
    Dupont, M., and Enßlin, T.
    ArXiv e-prints 2018

2017

  1. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients
    Owhadi, Houman, and Zhang, Lei
    Journal of Computational Physics 2017
  2. Bayesian Probabilistic Numerical Methods for Industrial Process Monitoring
    Oates, Chris J., Cockayne, Jon, and Aykroyd, Robert G.
    arXiv:1707.06107 [stat] 2017

2016

  1. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients
    Owhadi, H., and Zhang, L.
    ArXiv e-prints 2016
  2. Probabilistic Meshless Methods for Partial Differential Equations and Bayesian Inverse Problems
    ArXiv 2016

2015

  1. Probability Measures for Numerical Solutions of Differential Equations
    Conrad, Patrick R., Girolami, Mark, Särkkä, Simo, Stuart, Andrew, and Zygalakis, Konstantinos
    arXiv:1506.04592 [stat] 2015
  2. Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games
    Owhadi, H.
    ArXiv 2015
  3. Bayesian Numerical Homogenization
    Owhadi, Houman
    Multiscale Modeling & Simulation 2015

2013

  1. Information field dynamics for simulation scheme construction
    Enßlin, Torsten A.
    Phys. Rev. E 2013