Quadrature

2020

  1. A locally adaptive Bayesian cubature method
    Fisher, Matthew, Oates, Chris, Powell, Catherine, and Teckentrup, Aretha
    In International Conference on Artificial Intelligence and Statistics 2020

2018

  1. Bayesian Quadrature for Multiple Related Integrals
    Xi, X., Briol, F.-X., and Girolami, M.
    ArXiv e-prints 2018

2017

  1. Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
    Kanagawa, Motonobu, Sriperumbudur, Bharath K., and Fukumizu, Kenji
    arXiv:1709.00147 [cs, math, stat] 2017
  2. Optimal Monte Carlo integration on closed manifolds
    Ehler, M., Graef, M., and Oates, C. J.
    ArXiv e-prints 2017
  3. On the Sampling Problem for Kernel Quadrature
    Briol, François-Xavier, Oates, Chris J., Cockayne, Jon, Chen, Wilson Ye, and Girolami, Mark
    In Thirty-fourth International Conference on Machine Learning (ICML 2017) 2017
  4. Fully symmetric kernel quadrature
    Karvonen, Toni, and Särkkä, Simo
    arXiv:1703.06359 [cs, math, stat] 2017
  5. Classical quadrature rules via Gaussian processes
    Karvonen, Toni, and Särkkä, Simo
    In 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP) 2017

2016

  1. Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models
    Oates, Chris J., Niederer, Steven, Lee, Angela, Briol, François-Xavier, and Girolami, Mark
    arXiv:1606.06841 [stat] 2016
  2. Bayesian Quadrature Variance in Sigma-Point Filtering
    Prüher, Jakub, and Šimandl, Miroslav
    2016
  3. Convergence guarantees for kernel-based quadrature rules in misspecified settings
    Kanagawa, Motonobu, Sriperumbudur, Bharath K., and Fukumizu, Kenji
    2016

2015

  1. On the relation between Gaussian process quadratures and sigma-point methods
    Särkkä, S., Hartikainen, J., Svensson, L., and Sandblom, F.
    arXiv preprint stat.ME 1504.05994 2015
  2. Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
    Jitkrittum, W., Gretton, A., Heess, N., Eslami, S. M. A., Lakshminarayanan, B., Sejdinovic, D., and Szabó, Z.
    In Uncertainty in Artificial Intelligence (UAI) 31 2015
  3. Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees
    Briol, François-Xavier, Oates, Chris J., Girolami, Mark, and Osborne, Michael A.
    In Advances in Neural Information Processing Systems (NIPS) 2015
  4. On the Equivalence between Quadrature Rules and Random Features
    Bach, Francis
    arXiv preprint arXiv:1502.06800 2015
  5. Probabilistic Integration: A Role for Statisticians in Numerical Analysis?
    Briol, François-Xavier, Oates, Chris J., Girolami, Mark, Osborne, Michael A., and Sejdinovic, Dino
    arXiv:1512.00933 [cs, math, stat] 2015

2014

  1. Gaussian Process Quadratures in Nonlinear Sigma-Point Filtering and Smoothing
    Särkkä, Simo, Hartikainen, Jouni, Svensson, Lennart, and Sandblom, Fredrik
    In FUSION 2014
  2. Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature
    Gunter, Tom, Osborne, Michael A., Garnett, Roman, Hennig, Philipp, and Roberts, Stephen
    In Advances in Neural Information Processing Systems (NIPS) 2014
  3. Just-In-Time Learning for Fast and Flexible Inference
    Eslami, S. M. Ali, Tarlow, Daniel, Kohli, Pushmeet, and Winn, John
    In Advances in Neural Information Processing Systems (NIPS) 27 2014

2012

  1. Bayesian quadrature for ratios
    Osborne, M.A., Garnett, R., Roberts, S.J., Hart, C., Aigrain, S., and Gibson, N.
    In International Conference on Artificial Intelligence and Statistics 2012
  2. Active Learning of Model Evidence Using Bayesian Quadrature.
    Osborne, M.A., Duvenaud, D.K., Garnett, R., Rasmussen, C.E., Roberts, S.J., and Ghahramani, Z.
    In Advances in Neural Information Processing Systems (NIPS) 2012

2007

  1. Further Explorations of Likelihood Theory for Monte Carlo Integration
    Kong, Augustine, McCullagh, Peter, Meng, Xiao-Li, and Nicolae, Dan L.
    Advances in Statistical Modelling and Inference 2007

2004

  1. On a Likelihood Approach for Monte Carlo Integration
    Tan, Zhiqiang
    Journal of the American Statistical Association 2004

2003

  1. A theory of statistical models for Monte Carlo integration
    Kong, Augustine, McCullagh, Peter, Meng, Xiao-Li, Nicolae, Dan L., and Tan, Zhiquiang
    Journal of the Royal Statistical Society, Series B (Statistical Methodology) 2003

2002

  1. Bayesian Monte Carlo
    Ghahramani, Zoubin, and Rasmussen, Carl E
    In Advances in neural information processing systems 2002

2000

  1. Deriving quadrature rules from Gaussian processes
    Minka, T.P.
    2000

1998

  1. Bayesian quadrature with non-normal approximating functions
    Kennedy, Marc
    Statistics and Computing 1998

1996

  1. Iterative rescaling for Bayesian quadrature
    Kennedy, MC, and O’Hagan, A
    Bayesian Statistics 1996

1991

  1. Bayes–Hermite quadrature
    O’Hagan, A.
    Journal of statistical planning and inference 1991

1987

  1. Monte Carlo is Fundamentally Unsound
    O’Hagan, A.
    Journal of the Royal Statistical Society. Series D (The Statistician) 1987